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Abstract

Vast research efforts have been devoted to providing clinical diagnostic markers of myocardial infarction (MI), leading to
over one million abstracts associated with ‘‘MI’’ and ‘‘Cardiovascular Diseases’’ in PubMed. Accumulation of the research
results imposed a challenge to integrate and interpret these results. To address this problem and better understand how
the left ventricle (LV) remodels post-MI at both the molecular and cellular levels, we propose here an integrative framework
that couples computational methods and experimental data. We selected an initial set of MI-related proteins from published
human studies and constructed an MI-specific protein-protein-interaction network (MIPIN). Structural and functional
analysis of the MIPIN showed that the post-MI LV exhibited increased representation of proteins involved in transcriptional
activity, inflammatory response, and extracellular matrix (ECM) remodeling. Known plasma or serum expression changes of
the MIPIN proteins in patients with MI were acquired by data mining of the PubMed and UniProt knowledgebase, and
served as a training set to predict unlabeled MIPIN protein changes post-MI. The predictions were validated with published
results in PubMed, suggesting prognosticative capability of the MIPIN. Further, we established the first knowledge map
related to the post-MI response, providing a major step towards enhancing our understanding of molecular interactions
specific to MI and linking the molecular interaction, cellular responses, and biological processes to quantify LV remodeling.
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Introduction

Myocardial infarction (MI) is a prominent cause of mortality

and morbidity worldwide [1]. MI is defined as the death of cardiac

myocytes due to prolonged ischemia. As a result of myonecrosis,

molecules from injured myocytes are discharged into the blood

circulation, and the list of injury markers includes myoglobin,

cardiac troponins T and I, creatine kinase-MB, and lactate

dehydrogenase [2]. Molecular interactions within the myocardium

activate a cascade of cellular responses, including a robust

inflammatory response. The cellular responses within the LV are

integrated by the extracellular matrix stimuli that bind to surface

receptors. As such, the ECM coordinates the healing response to

MI [3,4,5,6,7,8].

Through the last 4 decades, there have been tremendous

research efforts towards understanding the immediate myocyte

response to ischemia, with the goal of identifying diagnostic

indicators as well as targets to preserve myocyte viability. These

have resulted in the implementation of several therapeutic

strategies, including reperfusion and the use of angiotensin

converting enzyme inhibitors [9,10]. Currently, 30 day post-MI

survival rates approach 90%, and the immediate prognosis is

excellent for those patients who receive timely and effective

treatment. The number of patients who will go on to develop

congestive heart failure, in part as a consequence of this success,

however, has increased. While much is known about the events

that occur immediately before and after MI, much remains to be

mechanistically elucidated regarding the effects of MI on long-

term survival. A knowledge map that explores the regulatory

relationship among ECM, cellular responses, and biological

pathways post-MI is still lacking.

Over a million abstracts can be retrieved from PubMed using a

keyword search for [‘‘myocardial infarction’’ or ‘‘cardiovascular

diseases’’], and massive amounts of genomic and proteomic data

and molecular profiles have been deposited in public databases

[11,12,13]. High-throughput protein microarrays have provided

efficient procedures to investigate and measure a vast number of

protein-ligand interactions in a single experiment. Protein-protein
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interaction network (PPI) analysis using large-scale databases has

been one of the most promising computational approaches to

integrate experimental data at the molecular and cellular levels

[14,15,16,17]. Due to the growing availability of such large-scale

datasets, PPIs have been applied to analyze numerous human

diseases including lung cancer, breast cancer, and myocardial

infarction [18,19,20].

The reported data which have largely been obtained with

different experimental conditions, protocols, species, and research

teams are embedded in the literature and distributed in disparate

databases. The ability to integrate data from such heterogeneous

resources will allow us to extract relevant information and identify

knowledge gaps to direct future research efforts. To address these

challenges, we report here an integrative computational approach

including compiling a MI-specific PPI database through mining

PubMed and UniProt to establish a knowledge map for LV

remodeling post-MI [21,22]. This MI-related knowledge map is

the first major step towards enhancing our understanding of

molecular interactions specific to MI and linking the molecular

interaction, cellular responses, and biological pathways.

Results

The MI-specific protein-protein interaction network
(MIPIN) is strongly connected

MI-related proteins were first obtained from the Online

Mendelian Inheritance in Man (OMIM) database, PubMed Gene,

and PubMed Protein databases by using ‘‘myocardial infarction’’

as the keyword and further refined by our cardiac clinicians (RAL

and RJC) and cardiac biologist (MLL), producing a list of 38 seed

proteins for humans [23]. With these seed proteins and their

interacting proteins, we constructed a MI-specific PPI network

with a total of 613 proteins (vertices) and an associated 4443

interactions (or edges) (Figure 1A). Detailed procedures to establish

the MIPIN are provided in the Methods.

We observed that the MIPIN was strongly connected, in that

there was always an edge between any two proteins in the MIPIN.

Of the 613 proteins, 70 proteins had only 1 or 2 edges, 121 had 3

to 5 edges, and the rest had .5 edges. The degree distribution of

MIPIN closely followed a power law distribution (Kolmogorov-

Smirnoff test, p-value = 0.97, see Methods for details), where the

degree of a vertex in a network was defined as the number of direct

links incident upon that vertex (Figure 1B). The power law

distribution indicated that the MIPIN was a scale-free network,

which displayed robustness against disruptive failures of random

vertices [24].

We performed two statistical tests to evaluate the specificity of

the MIPIN. First, interactions were shuffled based on the Erdos-

Renyi model, such that the 100,000 randomly generated networks

each had 613 vertices and 4443 edges, which was the same

number as the MIPIN [25]. Compared to the Erdos-Renyi model

of random networks, the MIPIN had a lower average value of

betweenness centrality while having higher average values of

closeness centrality, clustering coefficient, and eccentricity (empir-

ical p-value,0.001), indicating that proteins in the MIPIN were

much more closely related to each other than would occur by

random chance, and these proteins might have functional

relevance.

In the second more stringent statistics test, we randomly picked

the same number of seed proteins (n = 38) from 14969 human

proteins and created 100,000 random networks in the same

manner we constructed the MIPIN. Each random network had

different number of vertices and edges. Compared to the randomly

generated networks, the MIPIN had a higher mean value of

closeness centrality and eccentricity (empirical p-value,0.05) and

displayed a distinct distribution of closeness centrality (Figure 2A).

We observed a Gaussian-like distribution for closeness centrality in

the MIPIN, while closeness centrality distribution in the random

networks resembled the Delta function with few vertices having

very low value of closeness centrality, regardless of their number of

vertices and edges (Figure S1). We also noticed that the vertices

within a small range of degrees in the MIPIN had a larger variance

of closeness centrality (Figure 2B), while the closeness centrality

remained fairly constant with an increasing number of direct

interactions in the random networks (Figure S2). Figure 2B shows

that vertices in the first group [26] displayed substantial differences

in closeness centrality with small changes of degree (natural

logarithm of closeness centrality of the red group had a variance of

8.2561023). On the other hand, as the degree of a vertex

increased, the closeness centrality exhibited minor variation

(natural logarithm of closeness centrality of the red group had a

variance of 1.3761023).

The overall structure of the MIPIN demonstrated that it was a

strongly-connected and scale-free network, indicating that we

captured a solid network of protein interactions from the human

PPI that was highly specific. Further statistical tests allowed us to

evaluate the significance of several MIPIN network properties,

including betweenness centrality, closeness centrality, clustering

coefficient, and eccentricity. The larger mean values of closeness

centrality and eccentricity in MIPIN indicated that the randomly

generated networks had more orphan sub-networks in contrast to

the single strongly-connected MI network, suggesting proteins in

MIPIN were significantly more closely related to each other and

have more specific function than would occur by random chance.

Proteins in the MIPIN are localized primarily in the
extracellular matrix regions and plasma membrane

The localization of MIPIN proteins was determined using Gene

Ontology (GO) enrichment analysis by DAVID [27,28]. GO is a

Author Summary

Heart attack, known medically as myocardial infarction,
often occurs as a result of partial shortage of blood supply
to a portion of the heart, leading to the death of heart
muscle cells. Following myocardial infarction, complica-
tions might arise, including arrhythmia, myocardial rup-
ture, left ventricular dysfunction, and heart failure.
Although myocardial infarction can be quickly diagnosed
using a various number of tests, including blood tests and
electrocardiography, there have been no available prog-
nostic tests to predict the long-term outcome in response
to myocardial infarction. Here, we present a framework to
analyze how the left ventricle responds to myocardial
infarction by combining protein interactome and experi-
mental results retrieved from published human studies.
The framework organized current understanding of mo-
lecular interactions specific to myocardial infarction,
cellular responses, and biological processes to quantify
left ventricular remodeling process. Specifically, our
knowledge map showed that transcriptional activity,
inflammatory response, and extracellular matrix remodel-
ing are the main functional themes post myocardial
infarction. In addition, text analytics of relevant abstracts
revealed differentiated protein expressions in plasma or
serum expressions from patients with myocardial infarc-
tion. Using this data, we predicted expression levels of
other proteins following myocardial infarction.

MI Knowledge Map
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controlled vocabulary of terms that characterizes gene products in

terms of their cellular components, biological processes, and

molecular functions in a hierarchical structure from the most

general to more specialized terms. The cellular components

ontology describes locations at the levels of subcellular structures

and macromolecular complexes. We focused on classification by

cellular components to provide suggestions on the underlying

physiological protein functions.

More than 65% of the seed proteins were localized in the

extracellular region, including vascular endothelial growth factor

(VEGF), transforming growth factor beta-1 (TGFb1), and tissue

inhibitor of metalloproteinase-1 (TIMP1) (Figure 3). VEGF,

TGFb, and TIMP1 were also localized to platelet alpha-granules

that have been known to play an important role in thrombosis,

hemostasis, inflammation, atherosclerosis, wound healing, and

angiogenesis [29]. In addition, VEGF, TGFb, and TIMP1 were

localized to the ECM, cell surface, and cytoplasmic membrane-

bounded vesicle lumens in many cell types, suggesting active roles

in multiple pathologies. A list of GO cellular components of the

seed proteins were shown in Table S1.

The inclusion of interacting partners of seed proteins in the

MIPIN allows us to explore additional potential biomarkers for MI

response. These proteins added 57 cellular components to the

initial 19 locations (Figure 4). In addition to the extracellular

region, the plasma membrane and cytosol were two preferred sites

for most of the proteins in the MIPIN. We also identified a

Figure 1. Structure of the MI-specific protein-protein interaction network (MIPIN). (A) Construction of the MIPIN from 38 seed proteins.
Seed proteins are denoted as green circles while extended proteins (with interacting partners) are represented as red circles. Interactions are
represented as blue edges. Seed proteins not localized in ECM were labeled with dark green background in the list. (B) Degree distribution of MIPIN.
The histogram shows that the degree distribution of MIPIN followed a power law function, indicating that MIPIN is a scale-free network robust to
disturbance. The degree ranged from 1 to 366, with polyubiquitin-C being an outlier with the highest degree and not included in the plot.
doi:10.1371/journal.pcbi.1003472.g001

MI Knowledge Map
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number of macromolecular complexes, including the TGFb
receptor complex, interleukin-1 (IL1) receptor complex, death-

inducing signaling complex, origin recognition complex, lipopoly-

saccharide receptor complex, fibrinogen complex, integrin

complex, and transcription factor complex. These complexes

strongly suggest the presence of an inflammatory response. The

signaling pathway of the lipopolysaccharide receptor complex has

been linked to activation and deactivation of macrophages by

Figure 2. Specificity of the MIPIN. (A) Gaussian-like distribution of closeness centrality of MIPIN. (B) Closeness centrality vs. degree in MIPIN.
Vertices having from 1 to 5 degrees displayed substantial differences in closeness centrality (red); on the other hand, as the degree of vertices
increased, closeness centrality exhibited minor variation (green). These graphs demonstrate the clear differences between MIPIN and random
networks (see also Figure S1 and S2).
doi:10.1371/journal.pcbi.1003472.g002

MI Knowledge Map
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lipopolysaccharide, a major cell responding to inflammation [30].

Activated macrophages secrete many different inflammatory

cytokines, including IL1 and TGFb. IL1 receptor complex and

TGFb receptor complex are essential factors in the inflammatory

response post-MI [31,32].

Transcription activity, ECM remodeling, and
inflammatory response are main functional themes of
the MIPIN

We found 993 enriched GO biological process terms associated

with MIPIN using DAVID. To glean functional insight from the

large number of enriched GO biological process terms, we

adapted a method from Louie et al. to extract the most meaningful

biological processes, in terms of specificity [33]. In the GO

structural hierarchy, the biological processes can be traversed from

the root/parent node (GO:0008150:‘‘biological process’’) to

narrower and more specific definitions in the child nodes, such

as from the parent node ‘‘regulation of blood coagulation’’ to its

child terms: ‘‘positive regulation of blood coagulation’’ and

‘‘negative regulation of blood coagulation’’.

The function specificity for the GO terms was evaluated based

on four measures: number of ancestor terms, offspring score,

proportion of terms, and information content. Higher values of

these measures indicate higher specificity. A broader, more

general term has less number of ancestor terms and more

offspring when compared to a narrower, more specific definition.

The broadest term ‘‘biological process’’ had no ancestors, since it

is the root node in the biological process branch, as the parent of

all other GO biological process terms. The offspring score for a

GO term was calculated based on the number of offspring for a

node such that a higher score represents more specific function.

GO proportion described the ratio between numbers of ancestor

and offspring terms, with 0 indicating non-specific and 1 indicating

the highest specificity. In addition, we considered the probability

of observing a GO term because more specific terms annotate less

number of genes, and thus were less likely to be found enriched in

a dataset. Information content (IC) was a normalized score of this

probability such that the root node has an IC of 0, and more

specific terms have higher IC.

We obtained very different distributions of the 993 biological

process GO terms for each of these measures (Figure 5). The

number of ancestors followed a power-law distribution while

information content followed a Gaussian-like distribution. These

four evaluations illustrated that only a small number of 993 GO

terms were specific. Among the most specific GO terms with

regards to the number of ancestors, the top 20 terms were related

to kinase and transcriptional activities, suggesting the significant

signaling in the MIPIN (Table S2). We obtained 80 enriched GO

terms that had only one offspring in the GO dataset while the

offspring of the 80 GO terms were not enriched Table S3). These

80 GO terms were the most specific biological processes we could

identified for MIPIN. These terms also emphasized the role of

kinase signaling, cell apoptosis/necrosis, migration, differentiation,

cell-matrix adhesion, ECM remodeling, and inflammatory

response. Top 20 GO proportion evaluation resulted in signifi-

cance of kinase activity and inflammatory responses (Table S4).

The top 20 biological processes with the highest IC score

highlighted inflammatory and immune responses (Table S5).

The top two terms in the IC list were ‘‘negative regulation of

L-glutamate transport’’ (p-value,0.01) and ‘‘regulation of

L-glutamate transport’’ (p-value,0.05). Currently, there are very

few studies on the role of L-glutamate post-MI. Lofgren et al.

found that L-glutamate provides cardioprotection in the same

manner as classical ischemic preconditioning [34].

We listed the most significant GO biological process terms

based on the four specificity measures and noticed that transcrip-

tion activity, response to inflammation, and ECM remodeling

accounted for the most significant processes (p-value,0.0001,

Table 1). ‘‘Positive regulation of JUN kinase activity’’

(p-value,0.01) had the highest GO proportion as of 0.987, the

most number of ancestors (81) and only one child term, and a

relatively high IC score as of 7.96, therefore, we identified it as one

of the most enriched GO terms in the MIPIN. ‘‘Positive regulation

of interleukin-6 biosynthetic process’’ and ‘‘positive regulation of

interleukin-12 biosynthetic process’’ (p-value,0.005) ranked among

the top GO terms with highest number of ancestors, GO

proportion and IC score. These two processes represent inflam-

matory response post-MI. Additionally, three other inflammatory

functions ‘‘activation of plasma proteins involved in acute

inflammatory response’’, ‘‘connective tissue replacement involved

in inflammatory response wound healing’’ and ‘‘wound healing

involved in inflammatory response’’ (p-value,0.0001) were ranked

high in the top 20 IC list, further confirming the importance of

inflammatory response post-MI. These pathways are also impor-

tant for wound healing. Together with collagen fibril organization

and cell-matrix adhesion GO terms, we identified ECM remod-

eling as another key component post-MI.

Integrating experimental results to predict protein
expressions post-MI with the MIPIN

Based on GO biological process information and MIPIN

structure, we predicted protein expression levels in the MIPIN and

validated with published results obtained from MI patient data.

We automatically text-mined plasma and serum protein expres-

sion levels in post-MI patients reported in articles published

between Jan 1, 2005 and May 31, 2013. We chose plasma and

serum measurements here for an easier clinical study in the future.

Abstracts studying association of MI with diabetes, or coronary

artery diseases without MI, or protein concentrations being

measured after percutaneous coronary intervention post-MI, were

not considered. R and Java programs were written to perform

XML parsing and text mining on relevant PubMed abstracts (see

Methods). From a total of 4326 abstracts, we obtained 21 highly

confident up-regulated proteins, and 1 down-regulated protein

Figure 3. Localization of 38 MIPIN seed proteins. Seed proteins
are localized in 19 locations, more than half of which are in the
extracellular matrix (ECM) region. The indentation represents the
cellular component hierarchy from the most general to more
specialized terms. A horizontal blue line is used to separate ECM from
cellular components.
doi:10.1371/journal.pcbi.1003472.g003
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(Adiponectin), each with expression results confirmed by at least 2

citations (Table S6).

We used a semi-supervised learning method to predict

expression changes in other proteins in the network. With the

available expression levels on 22 ‘‘labeled’’ proteins as the training

set, we predicted 14 up-regulated proteins (Table 2). To validate

the computational predictions, we examined reported literature

from 1990 till current and found that 11 of the 14 predicted

proteins have supporting experimental evidence. Stromelysin-1

(matrix metalloproteinase-3 [MMP3]), neutrophil elastase (also

named as Human leukocyte elastase, HLE), thrombospondin-1

(TSP1), and fibronectin [35] increased in plasma from patients

post-MI [36,37,38,39,40]. In mouse models of MI, CD44

increased in LV by 6 hours, C-C motif chemokine 7 (CCL7)

increased in ischemic myocardium after 24 hours, ELAV-like

protein 1 [41] increased as well as matrilysin (MMP7)

[42,43,44,45]. Inhibition of collagen XVIII (COIA1) was found

to impair LV remodeling and heart failure in rat MI model

[46]. While there was no available expression data on

complement factor H (CFAH) and matrix metalloproteinase-17

(MMP17) in plasma from patients post-MI, the CFAH

polymorphism Y402H has been inversely associated with the

risk of coronary heart disease (CHD) among women but not

men, and MMP17 was found to be overexpressed in athero-

sclerotic vessels [47,48]. We did not find any information

regarding TIMP3, TNF-receptor associated factor 6 (TRAF6),

and brevican core protein (PGCB) in the setting of MI either for

human or animal studies, although TIMP3 was down-regulated

in patients with ischemic cardiomyopathy (ICM) and dilated

cardiomyopathy (DCM) [49]. Further experimental measure-

ments on these proteins are needed to validate our predictions

post-MI.

The interactions among the 36 proteins were shown in Figure 6.

All 14 predicted proteins and 22 labeled proteins are well

connected, except two labeled proteins (ADIPO and ANFB).

Since Adiponectin (ADIPO) was the only down-regulated protein

post-MI, we did not have sufficient evidence to predict other

down-regulated proteins. Also, we could not use natriuretic

peptides B (ANFB, also named as BNP for gene name) to predict

any proteins because none of its direct neighbors were connected

to proteins with known quantifications, hence having low

predictive confidence.

Figure 4. Localization of 613 MIPIN proteins. The complete set of MIPIN proteins (including interacting partners of seed proteins) are shown to
be residing in 76 locations, with plasma membrane, extracellular region, and cytosol being the most preferred sites. The indentation represents the
structural hierarchy of cellular component terms.
doi:10.1371/journal.pcbi.1003472.g004

Figure 5. Specificity of GO biological process terms. (Top left) Histogram of number of ancestors. (Bottom left) Histogram of number of
offspring. (Top right) Histogram of GO proportion. (Bottom right) Histogram of information content.
doi:10.1371/journal.pcbi.1003472.g005

MI Knowledge Map
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Establishment of MI knowledge map
Although the GO biological process revealed the overall

underlying molecular functions, it could not capture the regulatory

dynamics and dependencies required to completely describe a

pathway. To have a better understanding of MI pathology, we

examined the 613 proteins in the MIPIN and found 48 highly

enriched pathways from Biocarta (http://biocarta.com/; Figure 7).

These pathways covered broad categories, including adhesion,

apoptosis, cell activation, cell cycle regulation, cell signaling,

cytokines/chemokines, developmental biology, expression, hema-

topoiesis, and immunology.

We clustered the 48 enriched Biocarta pathways with respect to

their Kappa similarity matrix into 10 functional groups including 4

groups of Kinases Pathways, Angiogenesis, Hypoxia, Acute MI, 2

groups of Inflammatory Responses, LV Remodeling, and other

Signaling Pathways (Figure 8).

Each row and column in Figure 8 represented an enriched

Biocarta pathway for MIPIN. The sequence of pathways in rows

and columns are the same. The row sequence of pathways was

shown from the top to the bottom in Figure 8. Each cell in the

figure represented the intersection between a row and a column

and the color of a cell represented the similarity between two

pathways. The color legend denoted the similarity between two

pathways with the red representing high similarity and light color

representing low similarity. The strongest similarity was the self-

similarity and the color blocks with deepest red color were located

on the diagonal of this symmetric figure.

It was shown that the acute MI group (block AMI) shared high

similarity within the block and relative low similarity with only two

pathways h_sppaPathway in block angionenesis (block A) and

h_p53hypoxiaPathway in block hypoxia (block H). h_sppaPath-

way denoted ‘‘aspirin blocks signaling pathway involved in platelet

activation’’ and h_p53hypoxiaPathway denoted the role of p53

and hypoxia in the cardiovascular system. Interestingly, by checking

the color of the intersections of h_p53hypoxiaPathway and

h_sppaPathway, the similarity between these two pathways were

very low, suggesting no proteins in common in these two pathways

and these two pathways could independently contribute to acute MI.

Kinases (KP) and signaling pathway (SP) blocks shared high

similarity with more pathways in general since they transmitted

spatial signals to trigger pathways related to cellular functions,

which was illustrated by the appearance of light yellow boxes in

the rows/columns representing KP and SP blocks. Specifically,

kinases pathway blocks KP1, KP2, and signal transduction

pathway SP were closely related to inflammatory response IR1.

Kinases pathway block KP3 was closely related to hypoxia block

H. Kinases pathways block KP4 was closely related to angiogen-

esis block. As an example, platelet activation (h_sppaPathway) was

one of the pathways that shared similarity with the most number of

pathways Figure 8. It shared higher similarity with kinases

pathway block KP1 and low similarity with inflammatory response

block IR1 (as shown in the 3rd column from the right or 3rd row

from the bottom). Meanwhile, KP1 and IR1 shared high

similarity, suggesting a cause-effect relationship from platelet

activation, kinases pathway KP1 to inflammatory response IR1

cascade. Platelet activation pathway also shared high similarity

with KP3, KP4, and angiogenesis (A) blocks, suggesting a possible

regulation between platelet activation and angiogenesis.

Although there was no specific pathway named LV remodeling

in Biocarta, we defined the Inhibition of Matrix Metalloproteinases

Table 1. The most significant GO biology process terms based on four specificity measures (number of ancestors, offspring score,
GO proportion, and information content).

GO ID Term Number of Ancestors Offspring score GO proportion Information Content

GO:0043507 positive regulation of JUN
kinase activity

81 9.389 0.987 7.96

GO:0051092 positive regulation of
NF-kappaB transcription
factor activity

41 9.389 0.976 7.099

GO:0032760 positive regulation of tumor
necrosis factor production

14 9.389 0.933 8.796

GO:0048661 positive regulation of smooth
muscle cell proliferation

14 9.389 0.933 8.483

GO:0001954 positive regulation of
cell-matrix adhesion

17 9.389 0.944 9.256

GO:0030199 collagen fibril organization 9 9.389 0.9 8.631

GO:0002541 activation of plasma proteins
involved in acute inflammatory
response

15 9.389 0.938 12.256

GO:0045410 positive regulation of
interleukin-6 biosynthetic
process

43 9.389 0.977 11.034

GO:0045084 positive regulation of
interleukin-12 biosynthetic
process

43 9.389 0.977 11.034

GO:0002248 connective tissue replacement
involved in inflammatory
response wound healing

11 9.389 0.917 12.256

GO:0002246 wound healing involved in
inflammatory response

8 8.982 0.8 11.519

doi:10.1371/journal.pcbi.1003472.t001

MI Knowledge Map
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Table 2. Predicted up-regulated proteins, based on expression levels of 22 labeled proteins and summaries of the validating
results with details on species, tissue, and references.

Protein Disease Model Tissue Change References

CCL7 MI Mice LV Increased in ischemic myocardium
24 h post MI

[43]

CD44 MI Mice LV Increases in LV post MI by 6 h and
starts reducing by 24 h

[42]

CFAH Coronary heart diseases Human Plasma Inversely associated with the risk of
coronary heart diseases among women,
but not men

[48]

COIA1 MI Mice LV - [46]

HUR MI Mice LV Increased [44]

HLE MI Human Plasma Increased and peaked around 40 h
post-MI

[37,38]

FN MI Human Plasma Increased from 12 h to 14 days post-MI [40]

MMP17 Atherosclerosis Human Aortic wall Overexpression [47]

MMP3 MI Human Plasma Slowly increased with time (0–12 h;
12–24 h; 24–48 h; 48–72 h; 72–96 h).
After 48 h, MMP-3 levels were
significantly higher (vs 0 h)

[39]

MMP7 MI Mice LV infarct and LV
noninfarct

3-fold higher in remote and infarct
regions at day 7 post-MI

[45]

PGCB - - - - -

TIMP3 Ischemic/Dilated
Cardiomyopathy

Human LV Reduced in Ischemic and Dilated
Cardiomyopathy

[49]

TRAF6 - - - - -

TSP1 MI Human Plasma Increased [36]

doi:10.1371/journal.pcbi.1003472.t002

Figure 6. Interaction between labeled proteins with predicted proteins. Known down-regulated proteins are represented as hexagons.
Known up-regulated proteins are represented as circles. Predicted up-regulated proteins are represented as rounded rectangles. Green nodes
indicate seed proteins, and red nodes indicate extended interacting proteins.
doi:10.1371/journal.pcbi.1003472.g006
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pathway (h_reckPathway) as part of LV remodeling in our

knowledge map since the pathway was closely related to ECM

degradation. There are 9 proteins listed in pathway by Biocarta,

including MMP-2, -9, TIMP-1, -2, -3, -4, reversion-inducing-

cysteine-rich protein with kazal motifs (RECK), v-Ha-ras

Harvey rat sarcoma viral oncogene homolog (RAS) and all of

them were included in our MIPIN. This pathway did not show

high similarity with any other pathways in Figure 8 though

illustrating low similarity with h_pmlPathway in KP1 block,

h_bcrPathway and h_pyk2Pathway in KP4 block, and 7 pathways

in angiogenesis block, suggesting possible regulation among LV

remodeling, inflammatory response, and angiogenesis.

To better understand Figure 8, pathways clustered in each

functional group were listed in Table 3, and 160 proteins with

specific regulatory relationship in each functional group were listed

in Table S8. This forms the basic knowledge map for MI response

Figure 7. Enriched Biocarta pathways of MIPIN proteins. The number of proteins in each pathway is shown as the horizon coordinate.
doi:10.1371/journal.pcbi.1003472.g007

MI Knowledge Map

PLOS Computational Biology | www.ploscompbiol.org 10 March 2014 | Volume 10 | Issue 3 | e1003472



that links proteins to specific pathways and functional groups.

Combining functional information for all 613 potential MI

related proteins extracted by MIPIN, including cellular compo-

nents, biological processes, and specific pathways, we established

the knowledge map for MI (Figure S3). Essentially, the

knowledge map summarizes important spatial and temporal

aspects of the static MIPIN; it describes the progression of MI

and involvement of different proteins in three major phases:

Development of MI (hypoxia and acute MI), response to MI

(signaling pathway, kinases pathway, and inflammatory respons-

es), and tissue remodeling (left ventricle remodeling and

angiogenesis).

Figure 8. Heat map of Kappa similarity matrix for enriched Biocarta pathways. The graph visualizes the similarity of different pathways
using Kappa statistics (see Methods for details). At the cutoff value of 2.5, we identified 10 clusters. Checking protein functions in these pathways, we
grouped these clusters into 7 components, including Kinase Pathways (KP1–4 in chartreuse), Angiogenesis (A in green), Acute MI (AMI in orange),
Inflammatory Responses (IR1–2 in red), Hypoxia (H in magenta), LV remodeling (LV in dark red), and other Signaling Pathways (SP in dark green).
Colors for the clustering boxes are matched for Table 3, Table S8 and, Figure S3.
doi:10.1371/journal.pcbi.1003472.g008

Table 3. Biological processes enriched with the clustered pathways using Kappa similarity matrix.

Biological processes enriched by
clustered pathways Enriched 48 Biocarta pathways

Acute MI (AMI) h_plateletAppPathway, h_fibrinolysisPathway, h_intrinsicPathway, h_extrinsicPathway, h_amiPathway

Kinases Pathways (KP1) h_p38mapkPathway, h_pmlPathway, h_keratinocytePathway

Inflammatory Response (IR1) h_soddPathway, h_tnfr1Pathway, h_tnfr2Pathway, h_nfkbPathway, h_RELAPPathway, h_stressPathway

Kinases Pathways (KP2) h_gsk3Pathway, h_alkPathway, h_ps1Pathway, h_wntPathway

Signaling Pathways (SP) h_tgfbPathway, h_nthiPathway, h_tollPathway, h_il1rPathway

LV Remodeling (LV) h_reckPathway

Inflammatory Response (IR2) h_nktPathway, h_tsp1Pathway, h_Ccr5Pathway

Hypoxia (H) h_p53hypoxiaPathway, h_no1Pathway, h_hifPathway

Kinases Pathways (KP3) h_chemicalPathway, h_cblPathway, h_edge1Pathway, h_telPathway

Kinases Pathways (KP4) h_bcrPathway, h_pyk2Pathway, h_At1rPathway

Angiogenesis (A) h_cell2cellPathway, h_uCalpainPathway, h_mCalpainPathway, h_vegfPathway, h_cxcr4Pathway, h_ptenPathway,
h_tffPathway, h_integrinPathway, h_ecmPathway, h_sppaPathway, h_agrPathway, h_metPathway

doi:10.1371/journal.pcbi.1003472.t003
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Discussion

The goal of this study was to establish a framework to 1)

automatically extract the information embedded in MI-related

PubMed abstracts and reported data through a PPI network, 2)

integrate the information into a knowledge map for MI response,

and 3) cluster proteins in the knowledge map based on their

functions. In this study, we started from the seed proteins for MI

and PPI databases at molecular level, extended to cellular

components of the proteins at cellular level, and further mapped

the information to functional responses and specific pathways to

illustrate a complete framework that integrates molecular, cellular,

and functional analysis.

There are three major contributions of this study. First, we

established a MI-specific PPI network and confirmed its specificity

with two different statistical analyses. We predicted expression

levels of 14 proteins in the MIPIN based on the up/down

regulations of 22 proteins. The predicted protein expressions from

computational analyses agreed well with reported experimental

measurements. Second, we illustrated the importance of inflam-

matory and ECM remodeling responses in LV remodeling post-

MI. Most proteins in the MIPIN were localized primarily in the

extracellular regions and the plasma membrane. Additionally,

transcription activity, ECM remodeling, and inflammatory

response were the main functional themes of the MIPIN. In fact,

almost half of the 22 highly confident proteins were inflammatory

or extracellular proteins, demonstrating that these two phases are

very crucial in determining the outcome of MI. Third, we

established the first knowledge map for MI response based on the

clustered pathways. This is the first knowledge map constructed by

integrating our knowledge obtained from molecular, cellular, and

functional factors via PPI, cellular components, biological

processes and pathways. In addition, the knowledge map

illustrated the temporal response from development of MI to

tissue remodeling and the related proteins at each stage. The

approach to establish the knowledge map for MI could also be

applied to other diseases.

Our results illustrated that using the structural property of the

PPI network is a promising technique to distinguish functional

specific networks from random networks. However, individual

structure property alone may not be sufficient to identify

significant markers. Degree centrality provides independent

evaluation of direct links of a vertex. Intuitively, a hub protein

with higher degree may represent a significant marker. However,

this cannot be confirmed with current clinical practice. For

example, cardiac troponin I (cTnI) is a well-known biomarker for

MI but cTnI only has a degree of 3 in our network [50].

Additionally, MMP9 and TIMP1 have been reported as key

regulators of LV remodeling post-MI in a number of publications,

while MMP9 had a degree of 36 and TIMP1 had 12, the average

degree of MIPIN was 15 [51,52]. Another structure property,

betweenness, denotes how frequently a vertex or edge is used while

walking through the network with shortest path. The combination

of different structural properties might be a promising way to

identify key markers. For example, a vertex with small degree and

high betweenness denotes a protein that is frequently used to

transmit information in the network, suggesting its significance as a

bottle neck of the network or cross talk between biological

processes. More accurate analysis of such evaluation scheme will

be conducted in our future research.

Our results highlight the influence of the early inflammatory

response initiated after tissue hypoxia. Following hypoxia, up-

regulation of RAS, focal adhesion kinase 1 (FADK1), paxillin

(PXN), and p53 simultaneously induce at least four major cellular

activities, including cell proliferation, migration, apoptosis and

necrosis. Proliferation of endothelial cells increases the production

of nitric oxide (NO), which plays an important role in the later

phase of LV remodeling and wound healing. Fibroblasts and

myofibroblasts deposit a network of collagen at the infarct site,

preparing for the formation of tissue granulation. Collectively, cell

proliferation, migration, apoptosis and necrosis contribute to

angiogenesis parallel to scar formation.

In summary, we report here the establishment of the first MI-

specific PPI network that can be used as a foundation to

interrogate the literature for candidate biomarkers of adverse

remodeling post-MI.

Methods

Selection of seed proteins for MIPIN
In order to acquire a list of proteins related to MI, we initiated a

keyword search for ‘‘myocardial infarction’’ in three different

databases including OMIM, PubMed Gene and PubMed Protein,

resulting in an initial pool of 658 genes from OMIM and PubMed

Gene and 2319 protein sequences from PubMed Protein

databases. Because the obtained genes were retrieved using both

animal and clinical studies, all the genes and proteins retrieved

from OMIM, PubMed Gene, and PubMed Protein databases

were matched for human protein names in UniProt, yielding 709

proteins (Table S9). By evaluating the description of the genes

obtained from OMIM, terms not related to MI response were

revealed (e.g., stroke, arrhythmogenic, cardiomyopathy, and

arterial calcification). These genes were removed from our list.

We also removed proteins directly related to myocytes, since these

proteins reflect more the pre-MI or acute MI instead of post-MI

response. From this, we were left with 22 MI response related

genes.

Searching PubMed Gene and Protein databases provides a

candidate list of genes and protein sequences potentially associated

with MI; however, this search strategy does not provide any

description of the retrieved genes and proteins. We verified

additional 16 seed proteins associated with MI using genome wide

disease association databases, GENERIF and PubMed. This led to

a total of 38 seed proteins including the major ones previously

identified in our experiments, including collagen, MMP9, TIMP1,

TNFa, TGFb, and monocytes chemotactic protein-1 (MCP1). All

seed proteins were associated with MI in at least 2 independent

manuscripts, as shown in Table 4.

Consistent with a strong role in the wound healing response, a

significant portion of the seed proteins were localized to the ECM.

To verify whether our selection of seed proteins was biased, we

checked cellular localization of all MI related proteins obtained

from OMIM, PubMed Gene, and PubMed Protein databases and

encountered a similar result; most of the proteins were localized in

the extracellular region and plasma membrane (Table S10). These

results indicate that ECM proteins are more likely play a key role

in MI response and suggest that our seed protein selection was not

biased.

Construction of MIPIN
From the seed protein list, we searched for all proteins

interacting with seed proteins and interactions among the

extended proteins through ConsensusPathDB-human, which

integrates protein-protein interactions in Homo sapiens from

different databases such as Intact, DIP, MINT, HPRD, BioGRID

and MIPS [22]. Subsequently, we constructed the MIPIN using

‘igraph’ in R [53]. Each vertex of the network represents a protein

and each edge between two vertices represents a protein-protein
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interaction. The resulting MIPIN consists of 613 vertices and 4443

edges.

The degree distribution of MIPIN was examined by the

procedure proposed by Clauset et al. and implemented in R

[54]. Parameters were estimated based on the theoretical

cumulative distribution, P xð Þ~ x
xmin

{az1 where x, in this case,

was degrees of MIPIN vertices. The degree distribution was fitted

with xmin = 31 and a = 3.52 (Kolmogorov-Smirnoff test, p-val-

ue = 0.97). Additionally, the Kolmogorov-Smirnoff test was

performed to examine how well the estimated power law

distribution fitted MIPIN vertex degrees. If the Kolmogorov-

Smirnoff p-value,0.05, we reject the hypothesis that the original

data is drawn from the fitted power-law distribution. Otherwise,

the higher the Kolmogorov-Smirnoff p-value is above 0.05, the

better the estimated power-law distribution fits the data.

Statistical evaluation
There were several different measures used to characterize the

properties of the network, including betweenness centrality,

closeness centrality, clustering coefficient, degree centrality,

Table 4. The list of seed proteins with references to confirm the association of the proteins with MI.

Uniprot ID Source Evidence
Selected
Publications

ACE OMIM/PubMedGene/PubMedProtein OMIM text/GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [64,65,66]

ADIPO OMIM/PubMedGene OMIM text/GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [67,68,69]

ANFB PubMedGene GENERIF [70,71,72]

ATS4 PubMedGene/PubMedProtein GENERIF [73,74,75,76]

CCL2 PubMedGene/PubMedProtein GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [77,78,79]

CELR2 PubMedGene GENERIF [80,81,82]

CO3A1 OMIM OMIM text [83,84,85]

CRP OMIM/PubMedGene/PubMedProtein OMIM text/GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [71,86,87]

CXA4 OMIM/PubMedGene/PubMedProtein OMIM text/GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [88,89,90]

CYTC PubMedGene GENETIC_ASSOCIATION_DB_DISEASE [91,92,93]

EPCR OMIM/PubMedGene/PubMedProtein OMM text/GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [94,95,96]

FIBB OMIM/PubMedGene OMIM text/GENETIC_ASSOCIATION_DB_DISEASE [97,98,99]

GPVI PubMedGene GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [100,101,102]

ILRL1 PubMedGene GENERIF [103,104,105]

ITA4 PubMedProtein PubMed citations [106,107,108]

ITB3 OMIM/PubMedGene OMIM text/GENETIC_ASSOCIATION_DB_DISEASE [109,110,111]

LAMA3 PubMedGene GENERIF [112,113,114]

MMP3 OMIM/PubMedGene OMIM text/GENETIC_ASSOCIATION_DB_DISEASE [39,115,116]

MMP9 OMIM/PubMedGene OMIM text/GENETIC_ASSOCIATION_DB_DISEASE [117,118,119]

MRP6 OMIM/PubMedGene OMIM text/GENETIC_ASSOCIATION_DB_DISEASE [41,120,121]

NOS3 PubMedGene BIOCARTA/GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [97,122,123]

OSTP PubMedGene GENERIF [124,125,126]

PAI1 OMIM/PubMedGene/PubMedProtein OMIM text/GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [95,127,128,129]

PALLD OMIM/PubMedGene/PubMedProtein OMIM text [130,131]

PAPP1 OMIM/PubMedGene OMIM text/GENERIF [132,133,134]

PSRC1 PubMedGene GENERIF [12,80,82]

SDF1 OMIM/PubMedGene OMIM text/GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [135,136,137]

SFRP2 OMIM/PubMedGene OMIM text [138,139,140]

SPB8 PubMedProtein PubMed citations [141,142]

TGFB1 PubMedGene GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [31,143,144]

THRB OMIM/PubMedGene OMIM text/BIOCARTA/GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [145,146,147]

TIMP1 PubMedGene GENERIF [118,148,149]

TIMP3 PubMedGene GENERIF [150,151,152]

TLR2 OMIM/PubMedGene OMIM text [153,154,155]

TLR4 OMIM/PubMedGene OMIM text/GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [155,156,157]

TNFA OMIM/PubMedGene OMIM text [35,158,159]

TNFB OMIM/PubMedGene/PubMedProtein OMIM text/GENERIF/GENETIC_ASSOCIATION_DB_DISEASE [160,161,162]

VEGFA OMIM/PubMedGene/PubMedProtein OMIM text/GENETIC_ASSOCIATION_DB_DISEASE [26,163,164]

doi:10.1371/journal.pcbi.1003472.t004
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eccentricity, and graph density. The betweenness centrality

characterizes the direct and indirect influences of vertices at

distant network sites [55]. Closeness centrality measures how

many steps are required to access every other vertex from a given

vertex [55]. The vertex with the largest value of closeness

centrality performs the least amount of steps to sequentially

spread information to other reachable vertices from that vertex in

the network. Clustering coefficient describes the connectivity of the

neighborhood of a vertex [56]. Higher clustering coefficient means

more neighbors are connected to each other. Eccentricity of a

vertex measured the shortest path distance from the farthest vertex

in the graph [57]. We compared the value of six aforementioned

measures of MIPIN with the average measurements of randomly

generated networks. The empirical p-values for each measure were

then calculated by counting the number of random networks

whose average measures were equal to, greater or smaller than the

corresponding values from MIPIN.

Functional annotation analysis
We examined the functional organization of MIPIN with

enriched GO terms using DAVID Functional Annotation Tool

[27]. In DAVID, we set the count to be 2 and 0.05 for EASE, a

modified Fisher Exact P-Value. We further adapted the method

proposed by Louie et al. to measure the specificity of the enriched

GO terms for the MIPIN [33]. We computed four measurements

to describe the function specificity of enriched GO term lists.

i. Number of ancestors. This measurement was calculated

by counting the number of ancestor terms for a given GO term up

to and including the root term (GO:0008150 : biological processes).

ii. Offspring score. Similarly, the number of offspring nodes

that a node t has was counted as offsp(t): An adjusted

measurement of GO offspring was calculated as,

Offsp(t)~ln(Az1){ln½offsp(t)z1�, ð1Þ

where A was the number of offspring of the root node, which was

23877 for the current version of GO.

iii. GO proportion. In order to take into account both the

number of ancestor and offspring nodes for a particular GO term

t, we defined the GO proportion as,

P tð Þ~ # Ancestor

# Offspringz# Ancestor
: ð2Þ

The GO proportion will range from 0 to 1, where 0 indicates non-

specific function and 1 indicates high specificity.

iv. Information content. The information content (IC) was

calculated as follows,

IC tð Þ~{log2 Pr tð Þð Þ, ð3Þ

where Pr(t) was the ratio of the number of proteins assigned to the

term t to 14673 human proteins annotated with GO Biological

Process. Pr(t) was understood as the probability of observing a term

t in GO dataset. For example, the root term GO:0008150 would

have Pr of 1 and IC value of 0. An IC value of NA indicates that

the GO term is either obsolete or not available in the current

gene2go database. A GO term with higher IC value represents more

specific function.

Integration of experimental results and predictions of
protein changes

We searched the key word ‘‘(myocardial infarction) AND

(plasma OR serum)’’ on PubMed with ‘‘Homo Sapiens’’ as species

from Jan 1, 2005 until May 31, 2013. This search resulted in 4326

abstracts. To reduce laborious manual effort, we developed a data

mining program written in R using available XML parser and text

mining software [58,59].

The program required two input files, a list of protein aliases

and a dictionary of words. We took advantage of a feature offered

by UniProt in which users can submit a list of proteins and receive

their full names and aliases in XML format. In order to obtain the

full names and aliases of MIPIN proteins, we wrote a Java

program to parse downloaded UniProt XML files and extract

relevant information. The Java program can also be used to

retrieve other protein features such as protein structures, domain,

and citations in PubMed. The dictionary of words contained

commonly used word indicating protein changes such as,

‘‘elevate’’ or ‘‘up-regulate’’ for positive change ‘‘UP’’, or ‘‘down-

regulate’’ or ‘‘inhibit’’ for negative change ‘‘DOWN’’ (Table S7).

Abstracts in ‘‘txt’’ format were initially broken into separate

sentences. If words of change and names of any proteins were

found in the same sentence, we recorded the protein names with

the associated words, and PubMed ID of the abstracts. The final

output was manually checked to ensure complete and accurate

reporting of available protein concentrations. This program

significantly reduced the reading time of 4326 abstracts to

extracted key sentences.

From these abstracts, we retrieved a small number of proteins

with quantified concentrations in plasma or serum post-MI and

assigned as labeled proteins in the MIPIN. A large number of

MIPIN proteins did not have quantified concentrations and were

assigned as unlabeled proteins. We applied semi-supervised

learning to predict unlabeled proteins with the labeled protein

set. The key component of this method is defined in the similarity

matrix. The similarity matrix represents pair-wise similarity or

dissimilarity between pairs of vertices. In this case, we combined

graph structure similarity matrix evaluated using Jaccard coeffi-

cients and functional similarity matrix evaluated using Wang’s

method [60].

The Jaccard similarity matrix J of a graph G is a

|V(G)|6|V(G)| square matrix, where |V(G)| denotes the number

of vertices in the graph G. The Jaccard similarity coefficient of two

vertices/proteins i and j was defined as,

Jij~
Ni \

Nj
�� ��
Ni |

Nj
�� �� , i, j~1, . . . , V Gð Þj j, ð4Þ

where Ni and Nj represented the set of direct neighbors of vertex i

and j, respectively [61]. It follows that the diagonal of matrix J is 1.

Besides structural information embedded in the Jaccard

similarity matrix, we also integrated biological functions obtained

from GO terms by calculating GO biological process similarity

matrix GS also of size |V(G)|6|V(G)|.

The pairwise functional similarity between protein i, annotated

by GO biological process term sets GOBPi = (gobpi1, gobpi2,…,gob-

pim), and protein j, annotated by GO biological process term sets

GOBPj = (gobpj1, gobpj2,…,gobpjn), is defined as,

GSij~Sim GOBPi,GOBPj

� �
~P

1ƒaƒm Sim(gobpia,GOBPj)z
P

1ƒbƒn Sim(gobpjb,GOBPi)

mzn
,
ð5Þ

where Sim(gobpi,GOBPj) was defined as the maximum semantic

similarity between term gobpi and any of the terms in set GOBPj,

with m and n represented terms in the ith and jth GOBP term sets,
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respectively [60]. The semantic similarity between a pair of GO

terms can be determined based on their locations in the directed

acyclic GO graph and their semantic relations, which can be ‘is-a’

or ‘part-of’, with their ancestor terms. The GS matrix is

symmetric. We chose the Wang method, because the measure-

ment algorithm offered two advantages. First, it only depends on

the relationship of the GO terms within a specific ontology, which

is the biological process in this case. Second, it avoids the effect of

shallow annotation on the semantic relationships between child

and parent terms (i.e., with the same parent, a pair of terms near

the root should have larger semantic differences than a pair of

terms far away from the root). Thus, the algorithm provided a

consistent semantic similarity measurement between a pair of GO

terms.

We combined Jaccard similarity matrix J and GO biological

process similarity matrix GS to produce the final similarity matrix

W. The ij element of final similarity matrix W was defined as,

Wij~JijzGSij , i,j~1, . . . V Gð Þj j: ð6Þ

Let L denote the labeled proteins and U denote the unlabeled

proteins. The similarity matrix W could be partitioned as

W~
WLL WLU

WUL WUU

� �
: ð7Þ

Let S~D{1W , where D was the diagonal row sum matrix of

W, and YL was a binary vector describing the concentrations of

labeled proteins post-MI with 1 for positive change ‘‘UP’’ and 0

for negative change ‘‘DOWN’’. Then the predicted concentration

vector ŶY can be computed using the fits algorithm,

ŶY L

ŶY U

 !
~

SLLzSLU I{SUUð Þ{1
SUL

I{SUUð Þ{1
SUL

 !
YL: ð8Þ

The predicted concentrations were further updated with the

sequential predictions algorithm to drive the estimates towards

global point estimates. The algorithm ranked the unlabeled data

into k number of regions, such that the unlabeled set connecting to

the most number of labeled proteins was employed first with the

fits algorithm, and penalized unlabeled proteins farther away from

labeled proteins with inverse regularization penalty l. It was

reasonable to initialize the fits algorithm with the protein having

the highest labeled connectivity, and repeat with each subse-

quently ranked protein. We assigned the number of regions k to be

the number of unlabeled proteins. Since we wanted to maintain a

moderate regularization, the inverse regularization penalty l was

set to be 2. The prediction process was implemented with the

package ‘spa’ in R [62].

Pathways classification
A total of 48 enriched Biocarta pathways were retrieved from

DAVID using 613 proteins in MIPIN with ‘Count’ set to be 2 and

EASE set to be 0.05. The relationships between proteins and

associated pathways could be simplified to a binary matrix of M

rows and n columns, where M was the number of enriched

pathways and n was the total number of associated proteins with

enriched pathways (Table 5). If a protein was involved in a

pathway, the corresponding score was denoted as 1, otherwise 0.

Based on the pathway matrix, we used Kappa statistics to evaluate

pathway pairwise similarity matrix based on the belief that

pathways sharing common proteins might be related to one

another [63].

Considering two pathways I and J (I?J; I, J = 1, 2,…, M), we

could determine the number of proteins annotated by both

pathways, the number of proteins annotated by pathway J but not

I, the number of proteins annotated by pathway I but not I, and

the number of proteins not annotated by neither pathway among

the union of proteins annotated by all pathways, denoted as a, b, c

and d, respectively. Kappa score k was defined as k~

Pr agreeð Þ{Pr randomð Þ
1{Pr randomð Þ , where Pr(agree) was the observed

percentage agreement and Pr(random) was the overall probability

of random agreement. A high Kappa score indicated that two

pathways share many common proteins and vice versa.

The observed percentage agreement Pr(agree) could be calculat-

ed as,

Pr agreeð Þ~ azd

azbzczd
: ð9Þ

To calculated the overall probability of random agreement

Pr(random), we noted that pathway a annotates
azc

azbzczd
and

pathway b annotates
azb

azbzczd
of total associated proteins.

Thus, the probability that both pathways randomly annotate the

same proteins was
azcð Þ azbð Þ

azbzczdð Þ2
, and the probability that

neither pathway randomly annotate the same proteins was

bzdð Þ czdð Þ
azbzczdð Þ2

: Thus, the overall probability of random agree-

ment Pr(random) could be calculated as,

Pr randomð Þ~ azcð Þ azbð Þz bzdð Þ czdð Þ
azbzczdð Þ2

: ð10Þ

Kappa score k could be rewritten as,

k~
2 ad{bcð Þ

abzacz2adzb2zbdzc2zcd
: ð11Þ

Supporting Information

Figure S1 Histograms of log of closeness centrality of vertices in

25 random networks, which resembled delta function. Random

networks tend to have outliers.

(EPS)

Table 5. An example on evaluation of pathway pairwise
similarity matrix using Kappa statistics.

Protein 1 Protein 2 … Protein n

Pathway 1 1 0 1

Pathway 2 0 1 0

…

Pathway M 1 1 0

The relationships between proteins and associated pathways were represented
as a binary matrix of size M6n, corresponding to M enriched pathways and n
associated proteins. The absence and presence of a protein in a pathway were
denoted as 0 and 1, respectively.
doi:10.1371/journal.pcbi.1003472.t005
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Figure S2 Plot of closeness centrality against degree. Degree

centrality of a vertex in random networks does not have any

impacts on its closeness centrality.

(EPS)

Figure S3 MI knowledge map. The MI-specific protein-protein

interaction network is depicted with important proteins, enriched

biological processes, and cross-talk between different processes.

Important proteins are represented as round rectangles with

lighter shades. Color codes correspond to different pathways as in

Figure 8. For example, VEGFA was involved in both hypoxia and

angiogenesis pathways; therefore, it is located in the hypoxia box

and colored as green for angiogenesis. The inflammatory response

component contains two subgroups, as clustered in Figure 8. The

kinase pathways component contains four subgroups. Teal nodes

represent proteins which need to be further studied in the future

since they are not found enriched in current Biocarta pathways.

Details on protein memberships can be found in Table S8.

(EPS)

Table S1 GO cellular component terms of MIPIN seed proteins.

We did not combine child terms into their parent terms since they

showed more specific functions.

(XLSX)

Table S2 Top 20 enriched GO biological process terms with

highest number of ancestors, sorted by the number of ancestors.

(XLSX)

Table S3 List of 80 enriched GO biological process terms with 1

offspring, sorted by p-value.

(XLSX)

Table S4 Top 20 GO enriched biological process terms with

highest GO proportion.

(XLSX)

Table S5 Top 20 enriched GO biological process terms with

highest information content (IC), sorted by IC.

(XLSX)

Table S6 Results from data mining. Expression levels of the top

22 proteins were confirmed with at least two research articles and

without any controversial results in PubMed abstracts from the

year of 2005 to May 2013. Expression levels of the rest proteins

(those listed below the black line) were reported only once or have

controversial reports in PubMed abstracts.

(XLSX)

Table S7 Words of changes used for data mining.

(XLSX)

Table S8 MI knowledge map protein membership. Note: While

some proteins might be involved in different pathways, we showed

only the relevant relationships and not all possible relationships.

(XLSX)

Table S9 (a) List of genes obtained from OMIM database with

OMIM ID, gene symbol, official name, HUGO ID, and

corresponding reviewed Homo sapiens Uniprot ID, (b) List of

genes obtained from PubMed Gene database with gene symbol,

official name, HUGO ID, and corresponding reviewed Homo

sapiens Uniprot ID, (c) A. List of RefSeq Protein accession

obtained from PubMed Protein database, B. List of reviewed

Homo sapiens Uniprot ID obtained from RefSeq Protein

Accession.

(XLSX)

Table S10 List of enriched Gene Ontology Cellular Component

terms in the list of MI-related genes obtained from OMIM,

PubMed Gene and Protein databases.

(XLSX)
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